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Abstract. The finite lattice method of series expansion provides a powerful technique for 
deriving series expansions for square lattice models. The formalism of the method is 
derived and a number of applications are considered. 

1. Introduction 

The methods of exact series expansions have been some of the most useful tools in the 
investigation of lattice models in statistical mechanics. These techniques and their 
successes are reviewed in the collection edited by Domb and Green (1974). The most 
sophisticated techniques have been applied to the Ising model and the two reviews by 
Domb (1960, 1974a) trace developments through direct geometrical/combinatorial 
formalisms (Wakefield 195 l ) ,  through indirect combinatorial formalisms (Domb 
1960, § 5.2.4, Sykes et a1 1966) to star graph expansions (Sykes and Hunter 1974). This 
development represents a change from combinatorial complexity to algebraic complex- 
ity. The finite lattice method described below is an extreme case of this trend since all 
the combinatorial information about the graphical expansion can be expressed in an 
explicit algebraic form and the weight functions can be expressed largely in algebraic 
terms. 

In § 2 we give a simple description of the method, reserving the derivation for § 3. In 
3 4 we summarize some of the results of applying these techniques and in 9 5 we give our 
evaluation of the strengths of the method. The principle weakness of the method is that 
full power is achieved only for Ising-like models on square lattices. 

2. The finite lattice method 

The finite lattice method is primarily a technique for obtaining high-temperature 
expansions for the zero-field free energy of the king model and related models on a 
square lattice. The existence of duality transformations suggests that the method may 
be useful in deriving low-temperature expansions but at present this possibility has not 
been explored. 
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The models that we consider are defined as having vertices i connected by edges (i, j )  
and a q-state variable ti = 0, 1,2 ,3 ,  . . . , q - 1 at each side. Associated with each edge is 
an energy E(ti, ti) which depends only on (ti -ti) modulo q. This last constraint on the 
energy can be taken as our definition of ‘zero field‘. The model described above 
includes the king model (Ising 1925), the Ashkin-Teller model (Ashkin and Teller 
1943) and both the standard and planar Potts models (Potts 1952, Domb 1974b). 
Domb (1974b) gives a description of the techniques for obtaining expansions of the free 
energy for this class of model. 

For any graph (Y we define the partition function 2, by 

of 1* 

The finite lattice method states that for a square lattice 
N+m, 

1 
-lnZ,,= 1 ua In Z, 
N a E A  

(1) 

of N sites, in the limit of 

(2) 

(correct to order g(A) in l / k T )  where the only graphs included in the set A are those 
section subgraphs (strong subgraphs) of the square lattice defined by rectangular arrays 
of vertices. 

The coefficients a, and the cut-off order g(A) depend on the set of graphs A that are 
chosen. For the class of models defined above to have g(A) = r, the set A must include 
all rectangular graphs of m x n  vertices such that 2[(m-l)+(n-l)]Sr, i.e. the 
perimeter is less than or equal to r. Given a set A we assign to each graph (Y a weight 
6, = 1 for square arrays and 6, = 2 otherwise (to account combining the m X n and the 
n X m graphs into one term). We then define cQs as the number of ways graph p can be 
embedded in graph a and d,, denotes the inverse of matrix cas. Then 

There are at most two contributions to cas. If (Y is m x n and p is i x j then the first 
contribution is (m - i + 1) X ( n  - j + 1)m 3 i and n 3 j  or 0 otherwise. 

The second contribution which is added only if i # j  is (m - j  + 1) x (n - i + 1)m 3 j 
and n L i or 0 otherwise. 

This matrix cas is what Domb (1974~) calls a T matrix. In the work below we shall 
use cas to denote matrices of embedding constants defined over larger sets of graphs 
and dap to be its inverse. The sets defining the range of indices will be determined by the 
context. 

The description above essentially defines the finite lattice method. The combinator- 
ial results are very similar to those used by Hijmans and de Boer (1955) in that given a 
set of maximal graphs (our graphs of perimeter g(A) or the single maximal graph used 
by Hijmans and de Boer) the only subgraphs needed to give combinatorially correct 
contributions to lattice sums are those that can be formed from successive overlaps of 
existing graphs of A. 

The new feature in the formalism is our analysis of the grouping or cut-off factor 
g(A).  The power of the finite lattice method comes from the fact that the partition 
functions for rectangular graphs can be obtained by using the method of transfer 
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matrices (Domb 1960, 0 3.1). Each non-square array can have 2, evaluated in two 
ways and if we always choose the way that uses the smallest matrix then transfer 
matrices for bands up to n sites wide will be sufficient to give all 2, for arrays of 
perimeter less than or equal to 4n-2. This simplicity in calculating the 2, is the 
most powerful feature of the finite lattice method and on other lattices where such 
efficiency is absent the finite lattice method ceases to be superior to conventional cluster 
expansions. 

3. Derivation of the finite lattice method 

The finite lattice method can be regarded simply as a re-summation of the finite cluster 
method described by Domb (1974~). What we require are the following properties. 

For any graph a and any model described by (1) there exists an expansion 

where e ( a )  is the number of edges in a and h, is of order e @ )  in ( l / k T ) .  The factor x 
essentially determines the choice of the zero of energy. The factor h, is zero for 
disconnected graphs and graphs with vertices of order 1. We now choose a set B that 
includes all rectangular graphs of perimeter r and all subgraphs of such graphs. Clearly 
this includes all connected graphs with r or fewer edges and no vertices of order 1, and 
so the expansion is correct to ( l /kT) ' .  We now invert matrix cup to give 

For a being the infinite square lattice c,, becomes Nb, so that 

1 
- l n Z =  c bad,&,,. 
N a.8 E B  

We can now use the results of Hijmans and de Boer (1955) to show that Z,b,d,, 
(y@' in their notation) is zero unless /3 is one of the rectangular graphs. 

The grouping property for the weights h, is implicit in the work of Domb (1974b) 
(see also Sykes and Hunter 1974) where the lowest-order contribution to h, is that 
which involves all the bonds of the graph a. This property holds in the case of connected 
graph expansions and not merely for star graph (multiply connected graph) expansions. 
The existence of a connected graph expansion follows from the work of Sykes (1966). 

Instead of using the results of Hijmans and de Boer (1959, de Neef (1975) achieved 
the re-summation of the finite cluster expansion by noting that any graph p has a 
minimal rectangle r(@) and that an expansion that counts r e )  correctly will count p 
correctly. 

4. Applications 

4.1. rite three-state Potts model 
The zero-field free energy has been obtained to order ( 1 / k q 2 *  (de Neef 1975). Using 
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the notation of Straley and Fisher (1973) we write the reduced free energy as 

In A = 2x4 + 4x6 + 4x7 + 4x8 + 24x9 + 16x l o  + 6x l 1  + 172:~  l 2  + 128x l3  + 840x l4  

+ 1 1 8 0 ~ ' ~ + 2 5 6 8 x ' ~ + 9 2 0 4 x ' ~ +  1 1513~x'8+44700x'9+90852~xzo 

+ 191513~xz1+599012~22+* * 

where because of duality (Potts 1952) x can be either a low-temperature variable 
U = exp( -J /kT)  or a high-temperature variable, (1 - U)/[ 1 + (4 - l ) ~ ] .  As indicated by 
Enting (1977) the x16 term disagrees with the general 4 expansions of Kihara et a1 
(1954) and in view of other discrepancies the series above appears to be correct. The 
series has been analysed by the use of Pad6 approximants giving estimates of the critical 
exponent (Y = a' = 0.42 * 0.05. This value of (Y is much higher than the earlier estimates 
given by Straley and Fisher (1973). Enting (1974a,b) has pointed out that the 
thermodynamic inequalities imply that the Straley and Fisher estimates are indeed too 
low. A possible set of exponents that satisfy scaling is (Y =a'= 0.4, S = 15, /3 = 0.1, 
y = y' = 1.4, values that are not inconsistent with earlier estimates. A more detailed 
analysis of these series will be given elsewhere. 

4.2. Colouring polynomials 

The limit of colouring polynomials on lattices corresponds to the 'antiferromagnetic' 
Potts model at zero temperature. For q-colourings the appropriate expansion variable 
is (4 - l)-'. Kim and Enting (1978) have obtained such series to (4 - 1)-l8 correcting 
and extending earlier series of Nagle (1971). 

4.3. One-dimensional models 

The finite lattice method has been applied extensively by de Neef (1975, chaps 5 ,6)  to 
one-dimensional Heisenberg magnets. The derivation given does not include these 
models as it assumes a finite number of states per site. In any case the finite lattice 
method is equivalent to the finite cluster method on linear chains. The other innovation 
made in this work was to use the sum over rectangular graphs as a numerical 
approximation to the behaviour rather than for producing a truncated series. A 
sequence of such approximations can then be extrapolated to obtain estimates of the 
limiting behaviour. 

5. An assessment 

As remarked in the introduction the finite lattice method represents an extreme 
example of a trend away from combinatorial complexity towards algebraic complexity. 
This trend facilitates the use of digital computers in the derivation of series. Algebraic 
techniques can be readily formalized and a number of symbolic algebra systems exist 
(Barton and Fitch 1972). In contrast techniques based closely on graphical com- 
binatorics suffer from a number of difficulties when implemented on digital computers. 
Even the problem of identifying graphs and the related problem of a canonical labelling 
is non-trivial (Nagle 1966). Most graphical operations, such as finding all subgraphs, 
are defined recursively leading to great inefficiency unless the results of earlier steps are 
available in a large graph directory. 
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The finite lattice method does not eliminate the basic problems of complexity arising 
in calculations of series expansions because the size of the matrices grows exponentially 
with the number of terms required. Growth described by C" or n !  is typical of brute- 
force or exhaustive combinatorial techniques. A direct application of the method 
described in 0 2 would have involved transfer matrices with 541 441 elements, and so 
the actual calculation was performed essentially by re-calculating individual matrix 
elements each time they were needed. 

In conclusion we mention a simple modification that facilitates the application of 
standard symbolic algebra routines to these techniques. We take the exponential of (2) 
to give 

Since the cap has integer coefficients and all diagonal elements are 1, daP also has 
integer coefficients so the a, are integers. With appropriate expansion variables the Z, 
can be expressed as series with integer coefficients and so only integers are used in the 
calculations. It should be emphasized that in many cases the integers involved in 
intermediate results exceed the maximum FORTRAN integers of most computers 
necessitating the use of the multi-length integer sections of most symbolic algebra 
packages or alternative techniques such as modular arithmetic (Knuth 1969, p 248). 
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